差别
这里会显示出您选择的修订版和当前版本之间的差别。
| 两侧同时换到之前的修订记录前一修订版后一修订版 | 前一修订版 | ||
| 人工智能:torch:常用模型结构:efficientvit-模型结构 [2026/01/23 06:59] – ctbots | 人工智能:torch:常用模型结构:efficientvit-模型结构 [2026/01/26 02:39] (当前版本) – 移除 ctbots | ||
|---|---|---|---|
| 行 1: | 行 1: | ||
| - | ====== fficientvit-模型结构 ====== | ||
| - | ===== fficientvit 模型的文本结构输出 | ||
| - | < | ||
| - | EfficientVit( | ||
| - | (stem): Stem( | ||
| - | (in_conv): ConvNormAct( | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(3, 8, kernel_size=(3, | ||
| - | (norm): BatchNorm2d(8, | ||
| - | (act): Hardswish() | ||
| - | ) | ||
| - | (res0): ResidualBlock( | ||
| - | (pre_norm): Identity() | ||
| - | (main): DSConv( | ||
| - | (depth_conv): | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(8, 8, kernel_size=(3, | ||
| - | (norm): BatchNorm2d(8, | ||
| - | (act): Hardswish() | ||
| - | ) | ||
| - | (point_conv): | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(8, 8, kernel_size=(1, | ||
| - | (norm): BatchNorm2d(8, | ||
| - | (act): Identity() | ||
| - | ) | ||
| - | ) | ||
| - | (shortcut): Identity() | ||
| - | ) | ||
| - | ) | ||
| - | (stages): Sequential( | ||
| - | (0): EfficientVitStage( | ||
| - | (blocks): Sequential( | ||
| - | (0): ResidualBlock( | ||
| - | (pre_norm): Identity() | ||
| - | (main): MBConv( | ||
| - | (inverted_conv): | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(8, 32, kernel_size=(1, | ||
| - | (norm): BatchNorm2d(32, | ||
| - | (act): Hardswish() | ||
| - | ) | ||
| - | (depth_conv): | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(32, 32, kernel_size=(3, | ||
| - | (norm): BatchNorm2d(32, | ||
| - | (act): Hardswish() | ||
| - | ) | ||
| - | (point_conv): | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(32, 16, kernel_size=(1, | ||
| - | (norm): BatchNorm2d(16, | ||
| - | (act): Identity() | ||
| - | ) | ||
| - | ) | ||
| - | ) | ||
| - | (1): ResidualBlock( | ||
| - | (pre_norm): Identity() | ||
| - | (main): MBConv( | ||
| - | (inverted_conv): | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(16, 64, kernel_size=(1, | ||
| - | (norm): BatchNorm2d(64, | ||
| - | (act): Hardswish() | ||
| - | ) | ||
| - | (depth_conv): | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(64, 64, kernel_size=(3, | ||
| - | (norm): BatchNorm2d(64, | ||
| - | (act): Hardswish() | ||
| - | ) | ||
| - | (point_conv): | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(64, 16, kernel_size=(1, | ||
| - | (norm): BatchNorm2d(16, | ||
| - | (act): Identity() | ||
| - | ) | ||
| - | ) | ||
| - | (shortcut): Identity() | ||
| - | ) | ||
| - | ) | ||
| - | ) | ||
| - | (1): EfficientVitStage( | ||
| - | (blocks): Sequential( | ||
| - | (0): ResidualBlock( | ||
| - | (pre_norm): Identity() | ||
| - | (main): MBConv( | ||
| - | (inverted_conv): | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(16, 64, kernel_size=(1, | ||
| - | (norm): BatchNorm2d(64, | ||
| - | (act): Hardswish() | ||
| - | ) | ||
| - | (depth_conv): | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(64, 64, kernel_size=(3, | ||
| - | (norm): BatchNorm2d(64, | ||
| - | (act): Hardswish() | ||
| - | ) | ||
| - | (point_conv): | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(64, 32, kernel_size=(1, | ||
| - | (norm): BatchNorm2d(32, | ||
| - | (act): Identity() | ||
| - | ) | ||
| - | ) | ||
| - | ) | ||
| - | (1): ResidualBlock( | ||
| - | (pre_norm): Identity() | ||
| - | (main): MBConv( | ||
| - | (inverted_conv): | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(32, 128, kernel_size=(1, | ||
| - | (norm): BatchNorm2d(128, | ||
| - | (act): Hardswish() | ||
| - | ) | ||
| - | (depth_conv): | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(128, 128, kernel_size=(3, | ||
| - | (norm): BatchNorm2d(128, | ||
| - | (act): Hardswish() | ||
| - | ) | ||
| - | (point_conv): | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(128, 32, kernel_size=(1, | ||
| - | (norm): BatchNorm2d(32, | ||
| - | (act): Identity() | ||
| - | ) | ||
| - | ) | ||
| - | (shortcut): Identity() | ||
| - | ) | ||
| - | ) | ||
| - | ) | ||
| - | (2): EfficientVitStage( | ||
| - | (blocks): Sequential( | ||
| - | (0): ResidualBlock( | ||
| - | (pre_norm): Identity() | ||
| - | (main): MBConv( | ||
| - | (inverted_conv): | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(32, 128, kernel_size=(1, | ||
| - | (norm): Identity() | ||
| - | (act): Hardswish() | ||
| - | ) | ||
| - | (depth_conv): | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(128, 128, kernel_size=(3, | ||
| - | (norm): Identity() | ||
| - | (act): Hardswish() | ||
| - | ) | ||
| - | (point_conv): | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(128, 64, kernel_size=(1, | ||
| - | (norm): BatchNorm2d(64, | ||
| - | (act): Identity() | ||
| - | ) | ||
| - | ) | ||
| - | ) | ||
| - | (1): EfficientVitBlock( | ||
| - | (context_module): | ||
| - | (pre_norm): Identity() | ||
| - | (main): LiteMLA( | ||
| - | (qkv): ConvNormAct( | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(64, 192, kernel_size=(1, | ||
| - | (norm): Identity() | ||
| - | (act): Identity() | ||
| - | ) | ||
| - | (aggreg): ModuleList( | ||
| - | (0): Sequential( | ||
| - | (0): Conv2d(192, 192, kernel_size=(5, | ||
| - | (1): Conv2d(192, 192, kernel_size=(1, | ||
| - | ) | ||
| - | ) | ||
| - | (kernel_func): | ||
| - | (proj): ConvNormAct( | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(128, 64, kernel_size=(1, | ||
| - | (norm): BatchNorm2d(64, | ||
| - | (act): Identity() | ||
| - | ) | ||
| - | ) | ||
| - | (shortcut): Identity() | ||
| - | ) | ||
| - | (local_module): | ||
| - | (pre_norm): Identity() | ||
| - | (main): MBConv( | ||
| - | (inverted_conv): | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(64, 256, kernel_size=(1, | ||
| - | (norm): Identity() | ||
| - | (act): Hardswish() | ||
| - | ) | ||
| - | (depth_conv): | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(256, 256, kernel_size=(3, | ||
| - | (norm): Identity() | ||
| - | (act): Hardswish() | ||
| - | ) | ||
| - | (point_conv): | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(256, 64, kernel_size=(1, | ||
| - | (norm): BatchNorm2d(64, | ||
| - | (act): Identity() | ||
| - | ) | ||
| - | ) | ||
| - | (shortcut): Identity() | ||
| - | ) | ||
| - | ) | ||
| - | (2): EfficientVitBlock( | ||
| - | (context_module): | ||
| - | (pre_norm): Identity() | ||
| - | (main): LiteMLA( | ||
| - | (qkv): ConvNormAct( | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(64, 192, kernel_size=(1, | ||
| - | (norm): Identity() | ||
| - | (act): Identity() | ||
| - | ) | ||
| - | (aggreg): ModuleList( | ||
| - | (0): Sequential( | ||
| - | (0): Conv2d(192, 192, kernel_size=(5, | ||
| - | (1): Conv2d(192, 192, kernel_size=(1, | ||
| - | ) | ||
| - | ) | ||
| - | (kernel_func): | ||
| - | (proj): ConvNormAct( | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(128, 64, kernel_size=(1, | ||
| - | (norm): BatchNorm2d(64, | ||
| - | (act): Identity() | ||
| - | ) | ||
| - | ) | ||
| - | (shortcut): Identity() | ||
| - | ) | ||
| - | (local_module): | ||
| - | (pre_norm): Identity() | ||
| - | (main): MBConv( | ||
| - | (inverted_conv): | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(64, 256, kernel_size=(1, | ||
| - | (norm): Identity() | ||
| - | (act): Hardswish() | ||
| - | ) | ||
| - | (depth_conv): | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(256, 256, kernel_size=(3, | ||
| - | (norm): Identity() | ||
| - | (act): Hardswish() | ||
| - | ) | ||
| - | (point_conv): | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(256, 64, kernel_size=(1, | ||
| - | (norm): BatchNorm2d(64, | ||
| - | (act): Identity() | ||
| - | ) | ||
| - | ) | ||
| - | (shortcut): Identity() | ||
| - | ) | ||
| - | ) | ||
| - | ) | ||
| - | ) | ||
| - | (3): EfficientVitStage( | ||
| - | (blocks): Sequential( | ||
| - | (0): ResidualBlock( | ||
| - | (pre_norm): Identity() | ||
| - | (main): MBConv( | ||
| - | (inverted_conv): | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(64, 256, kernel_size=(1, | ||
| - | (norm): Identity() | ||
| - | (act): Hardswish() | ||
| - | ) | ||
| - | (depth_conv): | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(256, 256, kernel_size=(3, | ||
| - | (norm): Identity() | ||
| - | (act): Hardswish() | ||
| - | ) | ||
| - | (point_conv): | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(256, 128, kernel_size=(1, | ||
| - | (norm): BatchNorm2d(128, | ||
| - | (act): Identity() | ||
| - | ) | ||
| - | ) | ||
| - | ) | ||
| - | (1): EfficientVitBlock( | ||
| - | (context_module): | ||
| - | (pre_norm): Identity() | ||
| - | (main): LiteMLA( | ||
| - | (qkv): ConvNormAct( | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(128, 384, kernel_size=(1, | ||
| - | (norm): Identity() | ||
| - | (act): Identity() | ||
| - | ) | ||
| - | (aggreg): ModuleList( | ||
| - | (0): Sequential( | ||
| - | (0): Conv2d(384, 384, kernel_size=(5, | ||
| - | (1): Conv2d(384, 384, kernel_size=(1, | ||
| - | ) | ||
| - | ) | ||
| - | (kernel_func): | ||
| - | (proj): ConvNormAct( | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(256, 128, kernel_size=(1, | ||
| - | (norm): BatchNorm2d(128, | ||
| - | (act): Identity() | ||
| - | ) | ||
| - | ) | ||
| - | (shortcut): Identity() | ||
| - | ) | ||
| - | (local_module): | ||
| - | (pre_norm): Identity() | ||
| - | (main): MBConv( | ||
| - | (inverted_conv): | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(128, 512, kernel_size=(1, | ||
| - | (norm): Identity() | ||
| - | (act): Hardswish() | ||
| - | ) | ||
| - | (depth_conv): | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(512, 512, kernel_size=(3, | ||
| - | (norm): Identity() | ||
| - | (act): Hardswish() | ||
| - | ) | ||
| - | (point_conv): | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(512, 128, kernel_size=(1, | ||
| - | (norm): BatchNorm2d(128, | ||
| - | (act): Identity() | ||
| - | ) | ||
| - | ) | ||
| - | (shortcut): Identity() | ||
| - | ) | ||
| - | ) | ||
| - | (2): EfficientVitBlock( | ||
| - | (context_module): | ||
| - | (pre_norm): Identity() | ||
| - | (main): LiteMLA( | ||
| - | (qkv): ConvNormAct( | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(128, 384, kernel_size=(1, | ||
| - | (norm): Identity() | ||
| - | (act): Identity() | ||
| - | ) | ||
| - | (aggreg): ModuleList( | ||
| - | (0): Sequential( | ||
| - | (0): Conv2d(384, 384, kernel_size=(5, | ||
| - | (1): Conv2d(384, 384, kernel_size=(1, | ||
| - | ) | ||
| - | ) | ||
| - | (kernel_func): | ||
| - | (proj): ConvNormAct( | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(256, 128, kernel_size=(1, | ||
| - | (norm): BatchNorm2d(128, | ||
| - | (act): Identity() | ||
| - | ) | ||
| - | ) | ||
| - | (shortcut): Identity() | ||
| - | ) | ||
| - | (local_module): | ||
| - | (pre_norm): Identity() | ||
| - | (main): MBConv( | ||
| - | (inverted_conv): | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(128, 512, kernel_size=(1, | ||
| - | (norm): Identity() | ||
| - | (act): Hardswish() | ||
| - | ) | ||
| - | (depth_conv): | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(512, 512, kernel_size=(3, | ||
| - | (norm): Identity() | ||
| - | (act): Hardswish() | ||
| - | ) | ||
| - | (point_conv): | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(512, 128, kernel_size=(1, | ||
| - | (norm): BatchNorm2d(128, | ||
| - | (act): Identity() | ||
| - | ) | ||
| - | ) | ||
| - | (shortcut): Identity() | ||
| - | ) | ||
| - | ) | ||
| - | ) | ||
| - | ) | ||
| - | ) | ||
| - | (head): ClassifierHead( | ||
| - | (in_conv): ConvNormAct( | ||
| - | (dropout): Dropout(p=0.0, | ||
| - | (conv): Conv2d(128, 1024, kernel_size=(1, | ||
| - | (norm): BatchNorm2d(1024, | ||
| - | (act): Hardswish() | ||
| - | ) | ||
| - | (global_pool): | ||
| - | (classifier): | ||
| - | (0): Linear(in_features=1024, | ||
| - | (1): LayerNorm((1280, | ||
| - | (2): Hardswish() | ||
| - | (3): Dropout(p=0.0, | ||
| - | (4): Linear(in_features=1280, | ||
| - | ) | ||
| - | ) | ||
| - | ) | ||
| - | </ | ||
| - | ===== fficientvit 模型的模型PNG格式 | ||
| - | {{: | ||